Rainer bergmann biography channel

  • Rainer Bergmann We are thrilled to
  • Publications

    1Chen S, Francioli LC, Goodrich JK, Collins RL, Kanai M, Wang Q, Alföldi J, Watts NA, Vittal C, Gauthier LD, Poterba T, Wilson MW, Tarasova Y, Phu W, Grant R, Yohannes MT, Koenig Z, Farjoun Y, Banks E, Donnelly S, Gabriel S, Gupta N, Ferriera S, Tolonen C, Novod S, Bergelson L, Roazen D, Ruano-Rubio V, Covarrubias M, Llanwarne C, Petrillo N, Wade G, Jeandet T, Munshi R, Tibbetts K; Genome Aggregation Database Consortium; O'Donnell-Luria A, Solomonson M, Seed C, Martin AR, Talkowski ME, Rehm HL, Daly MJ, Tiao G, Neale BM, MacArthur DG, Karczewski KJ. Author Correction: A genomic mutational constraint map using variation in 76,156 human genomes. Nature. 2024 Jan 15. doi: 10.1038/s41586-024-07050-7. Epub ahead of print. Erratum for: Nature. 2024 Jan;625(7993):92-100. PMID: 38225470.2Chen S, Francioli LC, Goodrich JK, Collins RL, Kanai M, Wang Q, Alföldi J, Watts NA, Vittal C, Gauthier LD, Poterba T, Wilson MW, Tarasova Y, Phu W, Grant R, Yohannes MT, Koenig Z, Farjoun Y, Banks E, Donnelly S, Gabriel S, Gupta N, Ferriera S, Tolonen C, Novod S, Bergelson L, Roazen D, Ruano-Rubio V, Covarrubias M, Llanwarne C, Petrillo N, Wade G, Jeandet T, Munshi R, Tibbetts K; Genome Aggregation Database Consortium; O'Donnell-Luria A, Solomonson M, Seed C, Martin AR, Talkowski ME, Rehm HL, Daly MJ, Tiao G, Neale BM, MacArthur DG, Karczewski KJ. A genomic mutational constraint map using variation in 76,156 human genomes. Nature. 2024 Jan;625(7993):92-100. doi: 10.1038/s41586-023-06045-0. Epub 2023 Dec 6. Erratum in: Nature. 2024 Jan 15;: PMID: 38057664.3Guo MH, Francioli LC, Stenton SL, Goodrich JK, Watts NA, Singer-Berk M, Groopman E, Darnowsky PW, Solomonson M, Baxter S; gnomAD Project Consortium; Tiao G, Neale BM, Hirschhorn JN, Rehm HL, Daly MJ, O'Donnell-Luria A, Karczewski KJ, MacArthur DG, Samocha KE. Inferring compound heterozygosity from large-scale exome sequencing data. Nat Genet. 2024 Jan;56(1):152-161. doi: 10.1038/s41588-023-01608-3. Epub 202
      Rainer bergmann biography channel

    Abstract

    Ca channel β subunits regulate cell-surface expression and gating of voltage-dependent Ca channel α1 subunits. Based on primary sequence comparisons, β subunits are predicted to be modular structures composed of five domains (A–E) that are related to the large family of membrane-associated guanylate kinase proteins. The crystal structure of the β subunit core B–D domains has been reported recently; however, little is known about the structures of the A and E domains. The N-terminal A domain differs among the four subtypes of Ca channel β subunits (β1–β4) primarily as the result of two duplications of an ancestral gene containing multiple alternatively spliced exons. At least nine A domain sequences can be generated by alternative splicing. In this report, we focus on one A domain sequence, the highly conserved β4a A domain. We solved its three-dimensional structure and show that it is expressed in punctate structures throughout the molecular layer of the cerebellar cortex. We also demonstrate that it does not participate directly in Cav2.1 Cachannel gating but serves as a binding site in protein–protein interactions with synaptotagmin I and the LC2 domain of microtubule-associated protein 1A. With respect to β4 subunits, the interactions are specific for the β4a splice variant, because they do not occur with the β4b A domain. These results have strong bearing on our current understanding of the structure of alternatively spliced Ca channel β subunits and the cell-specific roles they play in the CNS.

    Keywords: Ca channel, β4a subunit, alternative splicing, protein structure, molecular layer of cerebellum, synaptotagmin

    Introduction

    Alternative splicing of neuronal genes has evolved as a mechanism for fine tuning many cell functions, including axonal migration and neurotransmitter release (Lipscombe, 2005). Alternative splicing of voltage-gated Ca channel α1 and β subunits has been shown to alter ga

  • Object of the evaluation.
  • Assessing brain-muscle networks during motor imagery to detect covert command-following

    • Registered report
    • Open access
    • Published:

    BMC Medicinevolume 23, Article number: 68 (2025) Cite this article

    • 153 Accesses

    • 1 Altmetric

    • Metrics details

    Abstract

    Background

    In this study, we evaluated the potential of a network approach to electromyography and electroencephalography recordings to detect covert command-following in healthy participants. The motivation underlying this study was the development of a diagnostic tool that can be applied in common clinical settings to detect awareness in patients that are unable to convey explicit motor or verbal responses, such as patients that suffer from disorders of consciousness (DoC).

    Methods

    We examined the brain and muscle response during movement and imagined movement of simple motor tasks, as well as during resting state. Brain-muscle networks were obtained using non-negative matrix factorization (NMF) of the coherence spectra for all the channel pairs. For the 15/38 participants who showed motor imagery, as indexed by common spatial filters and linear discriminant analysis, we contrasted the configuration of the networks during imagined movement and resting state at the group level, and subject-level classifiers were implemented using as features the weights of the NMF together with trial-wise power modulations and heart response to classify resting state from motor imagery.

    Results

    Kinesthetic motor imagery produced decreases in the mu-beta band compared to resting state, and a small correlation was found between mu-beta power and the kinesthetic imagery scores of the Movement Imagery Questionnaire-Revised Second version. The full-feature classifiers successfully distinguished between motor imagery and resting state for all participants, and brain-muscle functional networks did not contribute to the overall classification. Nevertheless, heart activity and cortical power were crucial to dete

  • 18 talking about this. www.henribergmann.com WW
  • .